Public key cryptography based on non-invertible matrices

Georgi Guninski*

April 13, 2022

Initial revision: Sat 02 Apr 2022

Abstract

We present public key cryptography algorithm based on non-ivertible matrices. Experimental data suggests the algorithm is not ready for usage, but the idea has the potential to be improved.

There was discussion on mathoverflow.net [2] 3] in the end of March 2022.

1 Algorithm guninski2 for public key cryptography based on non-invertible matrices

Alice and Bob agree on a prime p and positive integer n
Working over \mathbb{F}_{p} and all matrices are square $n \times n$.
Alice chooses invertible matrix X_{A} and non-invertible matrix M_{A} and makes public $P_{A}=X_{A} M_{A}$.

Bob chooses invertible matrix X_{B} and non-invertible matrix M_{B} and makes public $P_{B}=M_{B} X_{B}$.

Alice makes public $S_{A}=M_{A} P_{B}=M_{A} M_{B} X_{B}$.
Bob makes public $S_{B}=P_{A} M_{B}=X_{A} M_{A} M_{B}$.
To compute the shared secret $S=M_{A} M_{B}$, Allice compute $S=X_{A}^{-1} S_{B}=$ $X_{A}^{-1} X_{A} M_{A} M_{B}=M_{A} M_{B}$ and Bob computes $S=S_{A} X_{B}^{-1}=M_{A} M_{B} X_{B}^{A} X_{B}^{-1}=$ $M_{A} M_{B}$

At this point, everyone knows $P_{A}, P_{B}, S_{A}, S_{B}$ and only Alice and Bob know the shared secret $S=M_{A} M_{B}$.

Observe that $P_{A}, P_{B}, S_{A}, S_{B}$ are non-invertible, that is they are singular with determinants zero.

If P_{B} were invertible, an adversary could break the system by computing $S_{A} P_{B}^{-1}=M_{A} P_{B} P_{B}^{-1}=M_{A}$.

Let $I\left(P_{A}, P_{B}, S_{A}, S_{B}\right)$ be the set of pseudo keys, that is the set of quadruples $\left(X_{A}^{\prime}, M_{A}^{\prime}, X_{B}^{\prime}, M_{B}^{\prime}\right)$ satisfying the construction of the algorithm:

$$
\begin{align*}
& P_{A}=X_{A}^{\prime} M_{A}^{\prime} \tag{1}\\
& P_{B}=M_{B}^{\prime} X_{B}^{\prime} \tag{2}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& S_{A}=M_{A}^{\prime} P_{B} \tag{3}\\
& S_{B}=P_{A} M_{B}^{\prime} \tag{4}
\end{align*}
$$
\]

Define good key to be a pseudo key, which recovers the shared secret $M_{A} M_{B}$.
Trivially the good keys are in the set I, but I have many other members, which are not good.

Observe that (1), (3) depend only on $X_{A}^{\prime}, M_{A}^{\prime}$ and (2), (4) dependent only on $X_{B}^{\prime}, M_{B}^{\prime}$.

Let S_{A} be the set of pairs of matrices satisfying (1), (3).
Let S_{B} be the set of pairs of matrices satisfying (2), (4).
We have
$I\left(P_{A}, P_{B}, S_{A}, S_{B}\right)=\left\{\left(X_{A}^{\prime}, M_{A}^{\prime}, X_{B}^{\prime}, M_{B}^{\prime}\right): X_{A}^{\prime}, M_{A}^{\prime} \in S_{A}, X_{B}^{\prime} M_{B}^{\prime} \in S_{B}\right\}$
Observe that for $X_{A}^{\prime}, M_{A}^{\prime} \in S_{A}$ all of members of S_{B} give pseudo key.

2 Algebraic attack

Given $P_{A}, P_{B}, S_{A}, S_{B}$, the goal is to find the shared secret $M_{A} M_{B}$.
Take four matrices with entries variables: $X_{A}^{\prime}, M_{A}^{\prime}, X_{B}^{\prime}, M_{B}^{\prime}$.
Substitute in the construction to get four matrix equations.
Equating the entries in the equations, we get $4 n^{2}$ equations with $4 n^{2}$ variables.

Two of the matrix equations (3), (4) are the form constant matrix times unknown matrix, which gives $2 n^{2}$ linear equations. Using gaussian elimination, eliminate the linear variables and substitute in the other two equations (1), (2), leading to only $2 n^{2}$ quadratic equations.

The solutions of these equations are the pseudo keys.

3 Experimental data

We tried purely experimental approach to find the sets of pseudo keys and the good pseudo keys using sagemath [1].

Modulo errors, we tried small p, n using our implementation.
$p=11, n=2$ pseudo keys $=12321$ good keys $=221\left|S_{A}\right|=111,\left|S_{B}\right|=$ 111, $\left|S_{A} * S_{B}\right|=12321$
$p=2, n=4$ pseudo keys= 1404 good keys $=252\left|S_{A}\right|=108,\left|S_{B}\right|=13, \mid S_{A} *$ $S_{B} \mid=1404$
$p=3, n=3$ pseudo keys $=11400$ good keys $=1032\left|S_{A}\right|=456,\left|S_{B}\right|=$ $25,\left|S_{A} * S_{B}\right|=11400$

4 Future work

Instead of matrices, can we use other mathematical objects?
We don't need commutativity and zero divisors are our friend.

Acknowledgements

We thank Steven Landsburg, R. van Dobben de Bruyn, AAG and SGG and SG for their help.

References

[1] William A. Stein et al. Sage Mathematics Software (Version 9) Project page Mathoverflow answer
[2] Mathoverflow question Public key cryptography based on non-invertible matrices question
[3] Mathoverflow Public key cryptography based on non-invertible matrices, part II
question

[^0]: *email gguninski@gmail.com,email guninski@guninski.com

